close
close

Multi-bioinformatics revealed potential biomarkers and repurposed drugs for gastric adenocarcinoma-related gastric intestinal metaplasia

  • Eriksson, N. K., Karkkainen, P. A., Farkkila, M. A. & Arkkila, P. E. Prevalence and distribution of gastric intestinal metaplasia and its subtypes. Dig. Liver Dis. 40, 355–360 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Olmez, S., Aslan, M., Erten, R., Sayar, S. & Bayram, I. The Prevalence of Gastric Intestinal Metaplasia and Distribution of Helicobacter pylori Infection, Atrophy, Dysplasia, and Cancer in Its Subtypes. Gastroenterol. Res Pr. 2015, 434039 (2015).

    Google Scholar 

  • Eidt, S. & Stolte, M. Prevalence of intestinal metaplasia in Helicobacter pylori gastritis. Scand. J. Gastroenterol. 29, 607–610 (1994).

    Article 
    PubMed 

    Google Scholar 

  • Correa, P., Piazuelo, M. B. & Wilson, K. T. Pathology of gastric intestinal metaplasia: clinical implications. Am. J. Gastroenterol. 105, 493–498 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Vries, A. C. et al. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology 134, 945–952 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Rokkas, T., Filipe, M. I. & Sladen, G. E. Detection of an increased incidence of early gastric cancer in patients with intestinal metaplasia type III who are closely followed up. Gut 32, 1110–1113 (1991).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shichijo, S. et al. Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori eradication. Gastrointest. Endosc. 84, 618–624 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Jencks, D. S. et al. Overview of Current Concepts in Gastric Intestinal Metaplasia and Gastric Cancer. Gastroenterol. Hepatol. (N.Y) 14, 92–101 (2018).

    PubMed 

    Google Scholar 

  • Gutierrez-Gonzalez, L. et al. The clonal origins of dysplasia from intestinal metaplasia in the human stomach. Gastroenterology 140, 1251–1260 e1251-1256 (2011).

    Article 
    PubMed 

    Google Scholar 

  • McDonald, S. A. et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 134, 500–510 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kinoshita, H., Hayakawa, Y. & Koike, K. Metaplasia in the Stomach-Precursor of Gastric Cancer?. Int. J. Mol. Sci. 18, 2063 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumagai, K. et al. Expansion of Gastric Intestinal Metaplasia with Copy Number Aberrations Contributes to Field Cancerization. Cancer Res. 82, 1712–1723 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gupta, S. et al. AGA Clinical Practice Guidelines on Management of Gastric Intestinal Metaplasia. Gastroenterology 158, 693–702 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Pimentel-Nunes, P. et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 51, 365–388 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Banks, M. et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut 68, 1545–1575 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Filipe, M. I. et al. Incomplete sulphomucin-secreting intestinal metaplasia for gastric cancer. Preliminary data from a prospective study from three centres. Gut 26, 1319–1326 (1985).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez, C. A. et al. Incomplete type of intestinal metaplasia has the highest risk to progress to gastric cancer: results of the Spanish follow-up multicenter study. J. Gastroen Hepatol. 31, 953–958 (2016).

    Article 

    Google Scholar 

  • Shao, L. M. et al. Risk of gastric cancer among patients with gastric intestinal metaplasia. Int J. Cancer 143, 1671–1677 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Shah, S. C., Gawron, A. J., Mustafa, R. A. & Piazuelo, M. B. Histologic subtyping of gastric intestinal metaplasia: overview and considerations for clinical practice. Gastroenterology 158, 745–750 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Arai, J. et al. OLGIM staging and proton pump inhibitor use predict the risk of gastric cancer. Gut 71, 1043–1044 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Arai, J. Machine learning-based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy. Gastrointest Endosc. 95, 864–872 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Arai, J. et al. Letter: predictive model for gastric cancer after eradication of Helicobacter pylori-a survival analysis using a deep learning algorithm. Aliment Pharm. Ther. 54, 528–529 (2021).

    Article 

    Google Scholar 

  • Lloyd, J. M. & Owens, S. R. CD10 immunohistochemistry stains enteric mucosa, but negative staining is unreliable in the setting of active enteritis. Mod. Pathol. 24, 1627–1632 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Koulis, A. et al. CD10 and Das1: a biomarker study using immunohistochemistry to subtype gastric intestinal metaplasia. BMC Gastroenterol. 22, 197 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Businello, G. Molecular Landscapes of Gastric Pre-Neoplastic and Pre-Invasive Lesions. Int. J. Mol. Sci. 22, 9950 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheng, K. L. et al. An integrated approach to biomarker discovery reveals gene signatures highly predictive of cancer progression. Sci. Rep. 10, 21246 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, M., Wang, Y. & Yan, Y. Mining cell-cell signaling in single-cell transcriptomics atlases. Curr. Opin. Cell Biol. 76, 102101 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, P. et al. Dissecting the Single-Cell Transcriptome Network Underlying Gastric Premalignant Lesions and Early Gastric Cancer. Cell Rep. 27, 1934–1947 e1935 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kim, J. et al. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. NPJ Precis Oncol. 6, 9 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ianevski, A., Giri, A. K. & Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nature Communications 13 (2022).

  • Doncheva, N. T., Assenov, Y., Domingues, F. S. & Albrecht, M. Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7, 670–685 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kinoshita, H., Hayakawa, Y. & Koike, K. Metaplasia in the stomach—precursor of gastric cancer? Int. J. Mol. Sci. 18, 2063 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, C.-M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115–250ra115 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabben, H.-L. et al. Computational drug repositioning and experimental validation of ivermectin in treatment of gastric cancer. Front. Pharmacol. 12, 625991 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takaishi, S. et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27, 1006–1020 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Hayakawa, Y., Nakagawa, H., Rustgi, A. K., Que, J. & Wang, T. C. Stem cells and origins of cancer in the upper gastrointestinal tract. Cell Stem Cell 28, 1343–1361 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pai, P., Rachagani, S., Dhawan, P. & Batra, S. K. Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis 37, 223–232 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Henry, N. L. & Hayes, D. F. Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartwell, L., Mankoff, D., Paulovich, A., Ramsey, S. & Swisher, E. Cancer biomarkers: a systems approach. Nat. Biotechnol. 24, 905–908 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Lim, N. R. & Chung, W. C. Helicobacter pylori-associated chronic atrophic gastritis and progression of gastric carcinogenesis. Korean J. Gastroenterol. 82, 171–179 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Kawamura, M., et al. Endoscopic and histological risk stratification for gastric cancer using gastric intestinal metaplasia. Journal of Gastroenterology and Hepatology (2024).

  • Kawamura, M. et al. Endoscopic Grading of Gastric Intestinal Metaplasia Using Magnifying and Nonmagnifying Narrow-Band Imaging Endoscopy. Diagnostics 12, 3012 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gingold-Belfer, R. et al. The transition from gastric intestinal metaplasia to gastric cancer involves POPDC1 and POPDC3 downregulation. Int. J. Mol. Sci. 22, 5359 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, H. et al. OLFM4 promotes the progression of intestinal metaplasia through activation of the MYH9/GSK3β/β-catenin pathway. Mol. Cancer 23, 1–19 (2024).

    Article 

    Google Scholar 

  • Díaz, I. et al. Exploratory analysis of the gene expression matrix based on dual conditional dimensionality reduction. IEEE J. Biomed. Health Inform. 27, 3083–3092 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6, 263 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagemann, T., Balkwill, F. & Lawrence, T. Inflammation and cancer: a double-edged sword. Cancer Cell 12, 300–301 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, L. et al. Retinoblastoma binding protein 2 (RBP2) promotes HIF-1alpha-VEGF-induced angiogenesis of non-small cell lung cancer via the Akt pathway. PLoS One 9, e106032 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, X. et al. Histone demethylase RBP2 promotes malignant progression of gastric cancer through TGF-beta1-(p-Smad3)-RBP2-E-cadherin-Smad3 feedback circuit. Oncotarget 6, 17661–17674 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, D. H. et al. RBP2 induces stem-like cancer cells by promoting EMT and is a prognostic marker for renal cell carcinoma. Exp Mol Med 48 (2016).

  • Choi, H. J. et al. Role of RBP2-Induced ER and IGF1R-ErbB Signaling in Tamoxifen Resistance in Breast Cancer. J Natl Cancer Inst 110 (2018).

  • Sugano, K., Moss, S. F. & Kuipers, E. J. Gastric intestinal Metaplasia: real culprit or innocent bystander as a precancerous condition for gastric cancer? Gastroenterology (2023).

  • Altman, N. & Krzywinski, M. Association, correlation and causation. Nat. Methods 12, 899–900 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Parsons, M. J., Tammela, T. & Dow, L. E. WNT as a Driver and Dependency in Cancer. Cancer Discov. 11, 2413–2429 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei, Z.-N. et al. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct. Target. Ther. 7, 358 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y., Chen, M. & Deng, K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 62 (2023).

  • Tian, X. et al. Targeting apoptotic pathways for cancer therapy. The Journal of Clinical Investigation 134 (2024).

  • Tejeda-Muñoz, N., Mei, K.-C., Sheladiya, P. & Monka, J. Targeting membrane trafficking as a strategy for cancer treatment. Vaccines 10, 790 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabben, H.-L. et al. Neural signaling modulates metabolism of gastric cancer. iScience 24 (2021).

  • Bahar, M. E., Kim, H. J. & Kim, D. R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct. Target. Ther. 8, 455 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kantarjian, H., Jabbour, E., Grimley, J. & Kirkpatrick, P. Dasatinib. Nat. Rev. Drug Discov. 5, 717–718 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Braun, A. H., Frank, A. M., Ho, N. & Buchholz, C. J. Dasatinib is a potent enhancer for CAR T cell generation by CD3-targeted lentiviral vectors. Mol. Ther.-Methods Clin. Dev. 28, 90–98 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Rao, S. et al. Leveraging compound promiscuity to identify targetable cysteines within the kinome. Cell Chem. Biol. 26, 818–829.e819 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konings, I. R. H. M. et al. Phase I and pharmacological study of the broad-spectrum tyrosine kinase inhibitor JNJ-26483327 in patients with advanced solid tumours. Br. J. Cancer 103, 987–992 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boulos, J. C., Chatterjee, M., Shan, L. & Efferth, T. In silico, in vitro, and in vivo investigations on adapalene as repurposed third generation retinoid against multiple myeloma and leukemia. Cancers 15, 4136 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. et al. The anti-diabetic drug gliquidone modulates lipopolysaccharide-mediated microglial neuroinflammatory responses by inhibiting the NLRP3 inflammasome. Front. Aging Neurosci. 13, 754123 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Renner, O. et al. Systematic review of Gossypol/AT-101 in cancer clinical trials. Pharmaceuticals 15, 144 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muller, C. et al. The troglitazone derivative EP13 disrupts energy metabolism through respiratory chain complex I inhibition in breast cancer cells and potentiates the antiproliferative effect of glycolysis inhibitntriors. Cancer Cell Int. 24, 132 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, X. et al. PPARγ agonist pioglitazone enhances colorectal cancer immunotherapy by inducing PD-L1 autophagic degradation. Eur. J. Pharmacol. 950, 175749 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Rapoport, B. L. Rolapitant: An NK-1 Receptor Antagonist for the Prevention of Chemotherapy-Induced Nausea and Vomiting. Rev. Recent Clin. Trials 12, 193–201 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sethi, A., Joshi, K., Sasikala, K. & Alvala, M. Molecular docking in modern drug discovery: Principles and recent applications. Drug Discov. Dev. – N. Adv. 2, 1–21 (2019).

    Google Scholar 

  • Bhagat, R. T. et al. Molecular docking in drug discovery. J. Pharm. Res. Int. 33, 46–58 (2021).

    Article 

    Google Scholar 

  • Wang, T. C. et al. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 118, 36–47 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Iacono, G., Massoni-Badosa, R. & Heyn, H. Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol. 20, 110 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Karlsson, M. et al. A single–cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Uhlen, M. et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Berglund, L. et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol. Cell. Proteom. 7, 2019–2027 (2008).

    Article 

    Google Scholar 

  • Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteom. 4, 1920–1932 (2005).

    Article 

    Google Scholar 

  • Pontén, F., Jirström, K. & Uhlen, M. The Human Protein Atlas—a tool for pathology. J. Pathol.: A J. Pathological Soc. Gt. Br. Irel. 216, 387–393 (2008).

    Article 

    Google Scholar 

  • Berman, H. M. et al. The protein data bank. Nucleic acids Res. 28, 235–242 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Computational Chem. 30, 2785–2791 (2009).

    Article 

    Google Scholar 

  • Irwin, J. J. et al. ZINC20—a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Modeling 60, 6065–6073 (2020).

    Article 

    Google Scholar 

  • O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminformatics 3, 1–14 (2011).

    Google Scholar 

  • Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Computational Chem. 31, 455–461 (2010).

    Article 

    Google Scholar 

  • Schrodinger, L. The PyMOL molecular graphics system. Version 1, 8 (2015).

    Google Scholar 

  • Zhang, P. et al. Dissecting the Single-Cell Transcriptome Network Underlying Gastric Premalignant Lesions and Early Gastric Cancer. Cell Rep. 30, 4317 (2020).

    Article 
    PubMed 

    Google Scholar