close
close

Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape

  • Suttle, C. A. Marine viruses – Major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • López-García, P. et al. Metagenome-derived virus-microbe ratios across ecosystems. ISME J. 17, 1552–1563 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bar-On, Y. M. & Milo, R. The Biomass Composition of the Oceans: A Blueprint of Our Blue Planet. Cell 179, 1451–1454 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Sullivan, M. B., Weitz, J. S. & Wilhelm, S. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).

    PubMed 

    Google Scholar 

  • Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. 99, 14250–14255 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from Pole to Pole. Cell 177, 1109–1123 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Luo, E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. ISME J. 16, 1627–1635 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 5, 265–271 (2019).

    PubMed 

    Google Scholar 

  • Coutinho, F. H. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. 8, 1–12 (2017).

    Google Scholar 

  • Cassman, N. et al. Oxygen minimum zones harbour novel viral communities with low diversity. Environ. Microbiol. 14, 3043–3065 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Heinrichs, M. E. et al. Breaking the Ice: A Review of Phages in Polar Ecosystems. in 31–71. (Humana, New York, NY, 2024).

  • Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Frölicher, T. L. et al. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 28, 862–886 (2015).

    ADS 

    Google Scholar 

  • Huang, Y., Fassbender, A. J. & Bushinsky, S. M. Biogenic carbon pool production maintains the Southern Ocean carbon sink. Proc. Natl Acad. Sci. USA. 120, e2217909120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biggs, T. E. G. et al. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol. 42, 1997–2015 (2019).

    Google Scholar 

  • Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035–1047 (2013).

    ADS 

    Google Scholar 

  • Luria, C. M. et al. Seasonal shifts in bacterial community responses to phytoplankton-derived dissolved organic matter in the Western Antarctic Peninsula. Front. Microbiol. 8, 2117 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carvalho, F., Kohut, J., Oliver, M. J., Sherrell, R. M. & Schofield, O. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula. J. Geophys. Res. Ocean. 121, 5069–5083 (2016).

    ADS 

    Google Scholar 

  • Evans, C. & Brussaard, C. P. D. Regional variation in lytic and lysogenic viral infection in the southern ocean and its contribution to biogeochemical cycling. Appl. Environ. Microbiol. 78, 6741–6748 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: Dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Biggs, T. E. G., Huisman, J. & Brussaard, C. P. D. Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean. ISME J. 15, 3615–3622 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, C. et al. Shift from Carbon Flow through the Microbial Loop to the Viral Shunt in Coastal Antarctic Waters during Austral Summer. Microorganisms 9, 460 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eich, C. et al. Ecological Importance of Viral Lysis as a Loss Factor of Phytoplankton in the Amundsen Sea. Microorganisms 10, 1967 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Q. et al. Metagenomic Characterization of the Viral Community of the South Scotia Ridge. Viruses 11, 95 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gong, Z. et al. Viral Diversity and Its Relationship With Environmental Factors at the Surface and Deep Sea of Prydz Bay, Antarctica. Front. Microbiol. 9, 2981 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alarcón-Schumacher, T., Guajardo-Leiva, S., Martinez-Garcia, M. & Díez, B. Ecogenomics and Adaptation Strategies of Southern Ocean Viral Communities. mSystems 6, e0039621 (2021).

    PubMed 

    Google Scholar 

  • Lopez-Simon, J. et al. Viruses under the Antarctic Ice Shelf are active and potentially involved in global nutrient cycles. Nat. Commun. 14, 1–10 (2023).

    ADS 

    Google Scholar 

  • Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, J.-Z. et al. Virus classification for viral genomic fragments using PhaGCN2. Brief. Bioinform. 24, bbac505 (2023).

    PubMed 

    Google Scholar 

  • Bellas, C. et al. Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses. Proc. Natl Acad. Sci. USA. 120, e2300465120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 13, 1–14 (2015).

    Google Scholar 

  • Roux, S. et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 2016, e2777 (2016).

    Google Scholar 

  • Breitbart, M., Delwart, E., Rosario, K., Segalés, J. & Varsani, A. ICTV virus taxonomy profile: Circoviridae. J. Gen. Virol. 98, 1997–1998 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venables, H. et al. Sustained year-round oceanographic measurements from Rothera Research Station, Antarctica, 1997–2017. Sci. Data 10, 1–13 (2023).

    Google Scholar 

  • Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLOS Biol. 21, e3002083 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Straza, T. R. A., Ducklow, H. W., Murray, A. E. & Kirchmana, D. L. Abundance and single-cell activity of bacterial groups in Antarctic coastal waters. Limnol. Oceanogr. 55, 2526–2536 (2010).

    ADS 

    Google Scholar 

  • Sow, S. L. S. et al. Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environ. Microbiol. 24, 2449–2466 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luria, C. M., Amaral-Zettler, L. A., Ducklow, H. W. & Rich, J. J. Seasonal succession of free-living bacterial communities in coastal waters of the western antarctic peninsula. Front. Microbiol. 7, 1731 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Turner, D. et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 168, 74 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Yutin, N. et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat. Commun. 12, 1–11 (2021).

    Google Scholar 

  • Abergel, C., Legendre, M. & Claverie, J. M. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol. Rev. 39, 779–796 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Aylward, F. O., Moniruzzaman, M., Ha, A. D. & Koonin, E. V. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLOS Biol. 19, e3001430 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yutin, N., Mutz, P., Krupovic, M. & Koonin, E. V. Mriyaviruses: small relatives of giant viruses. MBio (2024).

  • Gaïa, M. et al. Mirusviruses link herpesviruses to giant viruses. Nature 616, 783–789 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallot-Lavallée, L. et al. The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting Haptolina (Chrysochromulina) ericina (Prymnesiophyceae). Genome Announc 3, e01413–e01415 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Santini, S. et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc. Natl Acad. Sci. USA. 110, 10800–10805 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roitman, S. et al. Isolation and infection cycle of a polinton-like virus virophage in an abundant marine alga. Nat. Microbiol. 8, 332–346 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Roux, S. et al. Updated Virophage Taxonomy and Distinction from Polinton-like Viruses. Biomolecules 13, 204 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yutin, N., Raoult, D. & Koonin, E. V. Virophages, polintons, and transpovirons: A complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol. J. 10, 1–15 (2013).

    Google Scholar 

  • Yau, S. et al. Virophage control of antarctic algal host-virus dynamics. Proc. Natl Acad. Sci. USA. 108, 6163–6168 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons. Science. 332, 231–234 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Roux, S. et al. Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics. Nat. Commun. 8, 1–12 (2017).

    CAS 

    Google Scholar 

  • Bellas, C. M. & Sommaruga, R. Polinton-like viruses are abundant in aquatic ecosystems. Microbiome 9, 1–14 (2021).

    Google Scholar 

  • Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 1–11 (2014).

    Google Scholar 

  • Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, M. G. & Hackl, T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540, 288–291 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Koonin, E. V. & Krupovic, M. Polintons, virophages and transpovirons: a tangled web linking viruses, transposons and immunity. Curr. Opin. Virol. 25, 7–15 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pagarete, A., Grébert, T., Stepanova, O., Sandaa, R. A. & Bratbak, G. Tsv-N1: A Novel DNA Algal Virus that Infects Tetraselmis striata. Viruses 7, 3937 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brussaard, C. P. D. Viral Control of Phytoplankton Populations—a Review1. J. Eukaryot. Microbiol. 51, 125–138 (2004).

    PubMed 

    Google Scholar 

  • Moreau, H. et al. Marine Prasinovirus Genomes Show Low Evolutionary Divergence and Acquisition of Protein Metabolism Genes by Horizontal Gene Transfer. J. Virol. 84, 12555–12563 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yau, S. et al. Virus-host coexistence in phytoplankton through the genomic lens. Sci. Adv. 6, eaay2587 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alarcón-Schumacher, T., Guajardo-Leiva, S., Antón, J. & Díez, B. Elucidating viral communities during a phytoplankton bloom on the west Antarctic Peninsula. Front. Microbiol. 10, 1014 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheik, A. R. et al. Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa. ISME J. 8, 212–225 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 15, 1302–1317 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Piontek, J., Meeske, C., Hassenrück, C., Engel, A. & Jürgens, K. Organic matter availability drives the spatial variation in the community composition and activity of Antarctic marine bacterioplankton. Environ. Microbiol. 24, 4030–4048 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Tada, Y., Makabe, R., Kasamatsu-Takazawa, N., Taniguchi, A. & Hamasaki, K. Growth and distribution patterns of Roseobacter/Rhodobacter, SAR11, and Bacteroidetes lineages in the Southern Ocean. Polar Biol. 36, 691–704 (2013).

    Google Scholar 

  • Silveira, C. B., Luque, A. & Rohwer, F. The landscape of lysogeny across microbial community density, diversity and energetics. Environ. Microbiol. 23, 4098–4111 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A. & Thomas, D. N. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 1988–2006 (2008).

    ADS 

    Google Scholar 

  • Hurwitz, B. L., Deng, L., Poulos, B. T. & Sullivan, M. B. Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ. Microbiol. 15, 1428–1440 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brussaard, C. P. D., Payet, J. P., Winter, C. & Weinbauer, M. G. Quantification of aquatic viruses by flow cytometry. in Manual of Aquatic Viral Ecology 102–109 (American Society of Limnology and Oceanography, 2010).

  • Mojica, K. D. A., Evans, C. & Brussaard, C. P. D. Flow cytometric enumeration of marine viral populations at low abundances. Aquat. Microb. Ecol. 71, 203–209 (2014).

    Google Scholar 

  • Marie, D., Partensky, F., Vaulot, D. & Brussaard, C. Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples. Curr. Protoc. Cytom. 10, 11.11.1–11.11.15 (1999).

    Google Scholar 

  • van Leeuwe, M. A., Villerius, L. A., Roggeveld, J., Visser, R. J. W. & Stefels, J. An optimized method for automated analysis of algal pigments by HPLC. Mar. Chem. 102, 267–275 (2006).

    Google Scholar 

  • Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).

    PubMed 

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada, Bulletin 167. Internationale Revue der gesamten Hydrobiologie und Hydrographie vol. 55 (1972).

  • Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    CAS 

    Google Scholar 

  • Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of seawater analysis. (1983).

  • Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 2019 3712 37, 1408–1412 (2019).

    CAS 

    Google Scholar 

  • Gruber-Vodicka, H. R., Seah, B. K. B. & Pruesse, E. phyloFlash: Rapid Small-Subunit rRNA Profiling and Targeted Assembly from Metagenomes. mSystems 5, e00920 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience 8, 1–14 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Wu, L.-Y. et al. Benchmarking bioinformatic virus identification tools using real-world metagenomic data across biomes.Genome Biol 25, 97. (2024).

  • Tisza, M. J., Belford, A. K., Dominguez-Huerta, G., Bolduc, B. & Buck, C. B. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol. 7, veaa100 (2021).

  • Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).

    Google Scholar 

  • Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Google Scholar 

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013).

  • Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).

    PubMed 

    Google Scholar 

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rice, P., Longden, L. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16, 276–277 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darriba, D. et al. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 37, 291–294 (2020).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hackl, T., Duponchel, S., Barenhoff, K., Weinmann, A. & Fischer, M. G. Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate. Elife 10, e72674 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aylward, F. O. & Moniruzzaman, M. ViralRecall—A Flexible Command-Line Tool for the Detection of Giant Virus Signatures in ‘Omic Data. Viruses 13, 150 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  • Karki, S., Barth, Z. K., Aylward, F. O. Chimeric origin of eukaryotes from Asgard archaea and ancestral giant viruses. bioRxiv 4–6 (2024).

  • Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 1–15 (2020).

    Google Scholar 

  • Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 1–21 (2010).

    Google Scholar 

  • Rambaut, A. FigTree v1.4.4 (2018).

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wolf, Y. I. et al. Origins and Evolution of the Global RNA Virome. MBio 9, e02329–18 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS One 5, e9490 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinforma. 20, 1–15 (2019).

    CAS 

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 294209 (2017).

    Google Scholar 

  • Li, D. hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. J. Open Source Softw. 3, 1041 (2018).

    ADS 

    Google Scholar 

  • Murtagh, F. & Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 31, 274–295 (2014).

    MathSciNet 

    Google Scholar 

  • McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Google Scholar