close
close

Viral infection and antiviral immunity in the oral cavity

  • Sedghizadeh, P. P., Mahabady, S. & Allen, C. M. Opportunistic oral infections. Dent. Clin. North Am. 61, 389–400 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajishengallis, G., Lamont, R. J. & Koo, H. Oral polymicrobial communities: assembly, function, and impact on diseases. Cell Host Microbe 31, 528–538 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kitamoto, S. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462.e14 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaffen, S. L. & Moutsopoulos, N. M. Regulation of host–microbe interactions at oral mucosal barriers by type 17 immunity. Sci. Immunol. 5, eaau4594 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iglesias-Bartolome, R. et al. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci. Transl Med. 10, eaap8798 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Szpaderska, A. M., Zuckerman, J. D. & DiPietro, L. A. Differential injury responses in oral mucosal and cutaneous wounds. J. Dent. Res. 82, 621–626 (2003).

    Article 
    PubMed 

    Google Scholar 

  • McCollum, A. M. & Damon, I. K. Human monkeypox. Clin. Infect. Dis. 58, 260–267 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Breman, J. G. & Henderson, D. A. Diagnosis and management of smallpox. N. Engl. J. Med. 346, 1300–1308 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Baron, S. Smallpox: the main site of transmission is the oropharynx. J. Dent. Res. 82, 252 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Leung, N. H. L. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 26, 676–680 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gewurz, B. E., Longnecker, R. M. & Cohen, J. I. in Fields Virology: DNA Viruses (eds Knipe, D. M. & Howley, P.) 324–388 (Lippincott Williams & Wilkins, 2022).

  • Klussmann, J. P. et al. Human herpesvirus type 8 in salivary gland tumors. J. Clin. Virol. 16, 239–246 (2000).

    Article 
    PubMed 

    Google Scholar 

  • James, C. et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 98, 315–329 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubin, S. A., Sauder, C. J. & Carbone, K. M. in Fields Virology (eds Knipe, D. M. & Howley, P.) 1024–1041 (Lippincott Williams & Wilkins, 2013).

  • Chibo, D., Riddell, M. A., Catton, M. G. & Birch, C. J. Applicability of oral fluid collected onto filter paper for detection and genetic characterization of measles virus strains. J. Clin. Microbiol. 43, 3145–3149 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roopashri, G. et al. Clinical and oral implications of dengue fever: a review. J. Int. Oral Health 7, 69–73 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Růžek, D., Yakimenko, V. V., Karan, L. S. & Tkachev, S. E. Omsk haemorrhagic fever. Lancet 376, 2104–2113 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Garry, R. F. Lassa fever — the road ahead. Nat. Rev. Microbiol. 21, 87–96 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Heckenberg, E., Steppe, J. T. & Coyne, C. B. in Advances in Virus Research (eds Kielian, M., Mettenleiter, T. C. & Roossinck, M. J.) 89–110 (Academic Press, 2022).

  • Corstjens, P. L., Abrams, W. R. & Malamud, D. Saliva and viral infections. Periodontol. 2000 70, 93–110 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Howley, P. M. & Knipe, D. M. Fields Virology: Emerging Viruses (Wolters Kluwer Health, 2020).

  • Greenspan, D. & Greenspan, J. S. Oral manifestations of HIV infection. AIDS Clin. Care 9, 29–33 (1997).

    PubMed 

    Google Scholar 

  • Slifka, M. K. & Hanifin, J. M. Smallpox: the basics. Dermatol. Clin. 22, 263–274 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Moss, W. J. & Griffin, D. E. Measles. Lancet 379, 153–164 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Lockhart, A., Mucida, D. & Parsa, R. Immunity to enteric viruses. Immunity 55, 800–818 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wemyss, K. & Konkel, J. E. Gingival monocytes: lessons from other barriers. Int. J. Biochem. Cell Biol. 145, 106194 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sun, H., Sun, C., Xiao, W. & Sun, R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell Mol. Immunol. 16, 205–215 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Squier, C. A. & Kremer, M. J. Biology of oral mucosa and esophagus. J. Natl Cancer Inst. Monogr. (2001).

  • Thirion-Delalande, C. et al. Comparative analysis of the oral mucosae from rodents and non-rodents: application to the nonclinical evaluation of sublingual immunotherapy products. PLoS ONE 12, e0183398 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stasio, D. D. et al. Measurement of oral epithelial thickness by optical coherence tomography. Diagnostics 9, 30 (2019).

    Article 

    Google Scholar 

  • Sawaf, M. H., Ouhayoun, J. P. & Forest, N. Cytokeratin profiles in oral epithelial: a review and a new classification. J. Biol. Buccal. 19, 187–198 (1991).

    Google Scholar 

  • Samiei, M. et al. Cell junctions and oral health. EXCLI J. 18, 317–330 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Şenel, S. An overview of physical, microbiological and immune barriers of oral mucosa. Int. J. Mol. Sci. 22, 7821 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feller, L., Khammissa, R. A., Wood, N. H. & Lemmer, J. Epithelial maturation and molecular biology of oral HPV. Infect. Agent. Cancer 4, 16 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell Biol. 129, 705–733 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wertz, P. W. Roles of lipids in the permeability barriers of skin and oral mucosa. Int. J. Mol. Sci. 22, 5229 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Squier, C. A. & Hall, B. K. The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. J. Invest. Dermatol. 84, 176–179 (1985).

    Article 
    PubMed 

    Google Scholar 

  • Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Groeger, S. & Meyle, J. Oral mucosal epithelial cells. Front. Immunol. 10, 208 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uehara, A., Fujimoto, Y., Fukase, K. & Takada, H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44, 3100–3111 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Sugawara, Y. et al. Toll-like receptors, NOD1, and NOD2 in oral epithelial cells. J. Dent. Res. 85, 524–529 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shannon, J. P. et al. Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium. Immunity 54, 276–290.e5 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, A. M. L., Sørensen, C. E., Proctor, G. B., Carpenter, G. H. & Ekström, J. Salivary secretion in health and disease. J. Oral Rehabil. 45, 730–746 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Johnstone, K. F. & Herzberg, M. C. Antimicrobial peptides: defending the mucosal epithelial barrier. Front. Oral Health 3, 958480 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorr, S. U. & Abdolhosseini, M. Antimicrobial peptides and periodontal disease. J. Clin. Periodontol. 38, 126–141 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Brandtzaeg, P. Secretory immunity with special reference to the oral cavity. J. Oral Microbiol. (2013).

  • Crawford, J. M., Taubman, M. A. & Smith, D. J. Minor salivary glands as a major source of secretory immunoglobin A in the human oral cavity. Science 190, 1206–1209 (1975).

    Article 
    PubMed 

    Google Scholar 

  • Subbarao, K. C. et al. Gingival crevicular fluid: an overview. J. Pharm. Bioallied Sci. 11, S135–S139 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siqueira, W. L., Custodio, W. & McDonald, E. E. New insights into the composition and functions of the acquired enamel pellicle. J. Dent. Res. 91, 1110–1118 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hannig, C., Hannig, M., Kensche, A. & Carpenter, G. The mucosal pellicle — an underestimated factor in oral physiology. Arch. Oral Biol. 80, 144–152 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Arambula, A., Brown, J. R. & Neff, L. Anatomy and physiology of the palatine tonsils, adenoids, and lingual tonsils. World J. Otorhinolaryngol. Head Neck Surg. 7, 155–160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagar, L. E. et al. Modeling human adaptive immune responses with tonsil organoids. Nat. Med. 27, 125–135 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, Q. et al. A TLR7–nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2. Nat. Mater. 22, 380–390 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koren, N. et al. Maturation of the neonatal oral mucosa involves unique epithelium–microbiota interactions. Cell Host Microbe 29, 197–209.e5 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Nassar, M. et al. GAS6 is a key homeostatic immunological regulator of host–commensal interactions in the oral mucosa. Proc. Natl Acad. Sci. USA 114, E337–E346 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zubeidat, K. et al. Microbiota-dependent and -independent postnatal development of salivary immunity. Cell Rep. 42, 111981 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Oever, J. T. & Netea, M. G. The bacteriome–mycobiome interaction and antifungal host defense. Eur. J. Immunol. 44, 3182–3191 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Aggor, F. E. et al. A gut–oral microbiome-driven axis controls oropharyngeal candidiasis through retinoic acid. JCI Insight 7, e160348 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weller, T. H. & Craig, J. M. The isolation of mumps at autopsy. Am. J. Pathol. 25, 1105–1115 (1949).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bausch, D. G. et al. Assessment of the risk of Ebola virus transmission from bodily fluids and fomites. J. Infect. Dis. 196, S142–S147 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Feller, L. et al. Oral mucosal immunity. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 576–583 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Stolley, J. M. et al. Depleting CD103+ resident memory T cells in vivo reveals immunostimulatory functions in oral mucosa. J. Exp. Med. 220, e20221853 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, D. W. et al. Human oral mucosa cell atlas reveals a stromal–neutrophil axis regulating tissue immunity. Cell 184, 4090–4104.e15 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hovav, A. H. Dendritic cells of the oral mucosa. Mucosal Immunol. 7, 27–37 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Daher, K. A., Selsted, M. E. & Lehrer, R. I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068–1074 (1986).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sancho-Vaello, E. et al. The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics. Sci. Rep. 10, 17356 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barlow, P. G., Findlay, E. G., Currie, S. M. & Davidson, D. J. Antiviral potential of cathelicidins. Future Microbiol. 9, 55–73 (2013).

    Article 

    Google Scholar 

  • He, M. et al. Cathelicidin-derived antimicrobial peptides inhibit Zika virus through direct inactivation and interferon pathway. Front. Immunol. 9, 722 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D., Biragyn, A., Hoover, D. M., Lubkowski, J. & Oppenheim, J. J. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–215 (2004).

    Article 
    PubMed 

    Google Scholar 

  • McNeely, T. B. et al. Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90, 1141–1149 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Pierson, T. C. & Diamond, M. S. A game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infection. Prog. Mol. Biol. Transl Sci. 129, 141–166 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl Med. 13, eabf1555 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Isho, B. et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 5, eabe5511 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sano, K. et al. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nat. Commun. 13, 5135 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klingler, J. et al. Detection of antibody responses against SARS-CoV-2 in plasma and saliva from vaccinated and infected individuals. Front. Immunol. 12, 759688 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selva, K. J. et al. Preexisting immunity restricts mucosal antibody recognition of SARS-CoV-2 and Fc profiles during breakthrough infections. JCI Insight 8, e172470 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terreri, S. et al. Persistent B cell memory after SARS-CoV-2 vaccination is functional during breakthrough infections. Cell Host Microbe 30, 400–408.e4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, J. I. et al. Comparison of levels of nasal, salivary, and plasma antibody to severe acute respiratory syndrome coronavirus 2 during natural infection and after vaccination. Clin. Infect. Dis. 76, 1391–1399 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Focosi, D., Maggi, F. & Casadevall, A. Mucosal vaccines, sterilizing immunity, and the future of SARS-CoV-2 virulence. Viruses 14, 187 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheikh-Mohamed, S., Sanders, E. C., Gommerman, J. L. & Tal, M. C. Guardians of the oral and nasopharyngeal galaxy: IgA and protection against SARS-CoV-2 infection. Immunol. Rev. 309, 75–85 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alu, A. et al. Intranasal COVID-19 vaccines: from bench to bed. eBioMedicine 76, 103841 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costantini, V. P. et al. Humoral and mucosal immune responses to human norovirus in the elderly. J. Infect. Dis. 221, 1864–1874 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Atmar, R. L. et al. An exploratory study of the salivary immunoglobulin a responses to 1 dose of a norovirus virus-like particle candidate vaccine in healthy adults. J. Infect. Dis. 219, 410–414 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, L. Z. et al. Kinetics of antigen-specific IgM/IgG/IgA antibody responses during Zika virus natural infection in two patients. J. Med. Virol. 91, 872–876 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Smith, D. J., Gahnberg, L., Taubman, M. A. & Ebersole, J. L. Salivary antibody responses to oral and parenteral vaccines in children. J. Clin. Immunol. 6, 43–49 (1986).

    Article 
    PubMed 

    Google Scholar 

  • Buisman, A.-M. et al. Preexisting poliovirus-specific IgA in the circulation correlates with protection against virus excretion in the elderly. J. Infect. Dis. 197, 698–706 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Friedman, M. G., Entin, N., Zedaka, R. & Dagan, R. Subclasses of IgA antibodies in serum and saliva samples of newborns and infants immunized against rotavirus. Clin. Exp. Immunol. 103, 206–211 (1996).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutzan, N., Konkel, J. E., Greenwell-Wild, T. & Moutsopoulos, N. M. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 9, 1163–1172 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panda, S. K. & Colonna, M. Innate lymphoid cells in mucosal immunity. Front. Immunol. 10, 861 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krishnan, S. et al. Amphiregulin-producing γδ T cells are vital for safeguarding oral barrier immune homeostasis. Proc. Natl Acad. Sci. USA 115, 10738–10743 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barel, O. et al. γδ T cells differentially regulate bone loss in periodontitis models. J. Dent. Res. 101, 428–436 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dutzan, N. et al. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46, 133–147 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutzan, N. et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl Med. 10, eaat0797 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hildreth, A. D. & O’Sullivan, T. E. Tissue-resident innate and innate-like lymphocyte responses to viral infection. Viruses 11, 272 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 e712 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cortez, V. S. et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. L. et al. Enrichment of innate lymphoid cell populations in gingival tissue. J. Dent. Res. 97, 1399–1405 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Shannon, J. P., Cherry, C. R., Vrba, S. M. & Hickman, H. D. Protocol for analyzing and visualizing antiviral immune responses after acute infection of the murine oral mucosa. STAR Protoc. 2, 100790 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shannon, J. P., Kamenyeva, O., Reynoso, G. V. & Hickman, H. D. Intravital imaging of vaccinia virus-infected mice. Methods Mol. Biol. 2023, 301–311 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hickman, H. D. et al. CXCR3 chemokine receptor enables local CD8+ T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fenner, F. Adventures with poxviruses of vertebrates. FEMS Microbiol. Rev. 24, 123–133 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Jacoby, R. O. & Bhatt, P. N. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. II. Pathogenesis. Lab. Anim. Sci. 37, 16–22 (1987).

    PubMed 

    Google Scholar 

  • Sigal, L. J. The pathogenesis and immunobiology of mousepox. Adv. Immunol. 129, 251–276 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kastrukoff, L. et al. Central nervous system infection and immune response in mice inoculated into the lip with herpes simplex virus type 1. J. Neuroimmunol. 2, 295–305 (1982).

    Article 
    PubMed 

    Google Scholar 

  • Kastrukoff, L. F., Lau, A. S., Takei, F., Carbone, F. R. & Scalzo, A. A. A NK complex-linked locus restricts the spread of herpes simplex virus type 1 in the brains of C57BL/6 mice. Immunol. Cell Biol. 93, 877–884 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Gonzalez, M. I. & Sanjuan, N. A. Striated muscle involvement in experimental oral infection by herpes simplex virus type 1. J. Oral Pathol. Med. 42, 486–490 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kollias, C. M., Huneke, R. B., Wigdahl, B. & Jennings, S. R. Animal models of herpes simplex virus immunity and pathogenesis. J. Neurovirol. 21, 8–23 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Rousseau, A. et al. Initial TK-deficient HSV-1 infection in the lip alters contralateral lip challenge immune dynamics. Sci. Rep. 12, 8489 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arvin, A. et al. (eds) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (Cambridge Univ. Press, 2007).

  • Hudson, J. B. The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. Arch. Virol. 62, 1–29 (1979).

    Article 
    PubMed 

    Google Scholar 

  • Roark, H. K., Jenks, J. A., Permar, S. R. & Schleiss, M. R. Animal models of congenital cytomegalovirus transmission: implications for vaccine development. J. Infect. Dis. 221, S60–S73 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pilgrim, M. J. et al. A focused salivary gland infection with attenuated MCMV: an animal model with prevention of pathology associated with systemic MCMV infection. Exp. Mol. Pathol. 82, 269–279 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, A. E., Cavanaugh, V. J. & Slater, J. S. The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med. Microbiol. Immunol. 197, 205–213 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Thom, J. T., Weber, T. C., Walton, S. M., Torti, N. & Oxenius, A. The salivary gland acts as a sink for tissue-resident memory CD8+ T cells, facilitating protection from local cytomegalovirus infection. Cell Rep. 13, 1125–1136 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zangger, N., Oderbolz, J. & Oxenius, A. CD4 T cell-mediated immune control of cytomegalovirus infection in murine salivary glands. Pathogens 10, 1531 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, C. J., Caldeira-Dantas, S., Turula, H. & Snyder, C. M. Murine CMV infection induces the continuous production of mucosal resident T cells. Cell Rep. 13, 1137–1148 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, W. et al. CD4+ T cells control murine cytomegalovirus infection indirectly. J. Virol. 96, e0007722 (2022).

    Article 
    PubMed 

    Google Scholar 

  • McCordock, H. A. & Smith, M. G. The visceral lesions produced in mice by the salivary gland virus of mice. J. Exp. Med. 63, 303–310 (1936).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hofmann, M. & Pircher, H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl Acad. Sci. USA 108, 16741–16746 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosh, S. et al. Enteric viruses replicate in salivary glands and infect through saliva. Nature 607, 345–350 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gardner, J. et al. Infectious chikungunya virus in the saliva of mice, monkeys and humans. PLoS ONE 10, e0139481 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zubeidat, K., Saba, Y., Barel, O., Shoukair, F. L. & Hovav, A.-H. Protocol for parotidectomy and saliva analysis in mice. STAR Protoc. 3, 101048 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Song, S., Pitot, H. C. & Lambert, P. F. The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol. 73, 5887–5893 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spanos, W. C. et al. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J. Virol. 82, 2493–2500 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Cladel, N. M. et al. Mouse papillomavirus MmuPV1 infects oral mucosa and preferentially targets the base of the tongue. Virology 488, 73–80 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Wei, T., Buehler, D., Ward-Shaw, E. & Lambert, PaulF. An infection-based murine model for papillomavirus-associated head and neck cancer. mBio 11, e00908-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez, A., Kuraji, R. & Kapila, Y. L. The human oral virome: shedding light on the dark matter. Periodontol. 2000 87, 282–298 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tisza, M. J. & Buck, C. B. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc. Natl Acad. Sci. USA 118, e2023202118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abeles, S. R. et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8, 1753–1767 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paietta, E. N. et al. Characterization of diverse anelloviruses, cressdnaviruses, and bacteriophages in the human oral DNA virome from North Carolina (USA). Viruses 15, 1821 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S. et al. A catalog of 48,425 nonredundant viruses from oral metagenomes expands the horizon of the human oral virome. iScience 25, 104418 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pride, D. T. et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 6, 915–926 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Zuo, T. et al. Human-gut-DNA virome variations across geography, ethnicity, and urbanization. Cell Host Microbe 28, 741–751.e4 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Abbas, A. A. et al. Redondoviridae, a family of small, circular DNA viruses of the human oro-respiratory tract associated with periodontitis and critical illness. Cell Host Microbe 25, 719–729.e4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slots, J. Oral viral infections of adults. Periodontol. 2000 49, 60–86 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Makoa-Meng, M. et al. Correlation of redondovirus and entamoeba gingivalis detections in the human oral cavity suggests that this amoeba is possibly the redondovirus host. Int. J. Mol. Sci. 24, 6303 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, M. et al. ACE2 and furin expressions in oral epithelial cells possibly facilitate COVID-19 infection via respiratory and fecal–oral routes. Front. Med. 7, 580796 (2020).

    Article 

    Google Scholar 

  • Chen, L. et al. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif. 53, e12923 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tamiya, J. et al. Detection of SARS-CoV-2 and its related factors on the mucosal epithelium of the tongue. Acta Histochem. Cytochem. 56, 29–37 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alba, J. R. et al. Mapping of SARS-CoV-2 in Waldeyer’s lymphatic ring and visceral biopsies: the age and the illness duration’s impact. Braz. J. Otorhinolaryngol. 89, 101317 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amorim Dos Santos, J. et al. Oral manifestations in patients with COVID-19: a living systematic review. J. Dent. Res. 100, 141–154 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Jimenez-Cauhe, J. et al. Enanthem in patients with COVID-19 and skin rash. JAMA Dermatol. 156, 1134–1136 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • La Rosa, G. R. M., Libra, M., De Pasquale, R., Ferlito, S. & Pedullà, E. Association of viral infections with oral cavity lesions: role of SARS-CoV-2 infection. Front. Med. 7, 571214 (2020).

    Article 

    Google Scholar 

  • Marchesan, J. T., Warner, B. M. & Byrd, K. M. The “oral” history of COVID-19: primary infection, salivary transmission, and post-acute implications. J. Periodontol. 92, 1357–1367 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandão, T. B. et al. Oral lesions in patients with SARS-CoV-2 infection: could the oral cavity be a target organ? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 131, e45–e51 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Campbell, C. et al. Saliva-based SARS-CoV-2 serology using at-home collection kits returned via mail. Sci. Rep. 12, 14061 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsuchiya, H. The oral cavity potentially serving as a reservoir for SARS-CoV-2 but not necessarily facilitating the spread of COVID-19 in dental practice. Eur. J. Dent. (2022).

  • Fernandes, T. J. et al. Oral manifestations of COVID-19 in unvaccinated patients: a cross-sectional study. BMC Oral Health 23, 696 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fenner, F. et al. Smallpox and its eradicaiton (WHO, 1988).

  • Ndodo, N. et al. Distinct monkeypox virus lineages co-circulating in humans before 2022. Nat. Med. 29, 2317–2324 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kibungu, E. M. et al. Clade I-associated mpox cases associated with sexual contact, the Democratic Republic of the Congo. Emerg. Infect. Dis. 30, 172–176 (2023).

    PubMed 

    Google Scholar 

  • Hutson, C. L. et al. A prairie dog animal model of systemic orthopoxvirus disease using West African and Congo Basin strains of monkeypox virus. J. Gen. Virol. 90, 323–333 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Hickman, H. D. et al. Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin. Cell Host Microbe 13, 155–168 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freyn, A. W. et al. An mpox virus mRNA–lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci. Transl Med. 15, eadg3540 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Chapman, J. L., Nichols, D. K., Martinez, M. J. & Raymond, J. W. Animal models of orthopoxvirus infection. Vet. Pathol. 47, 852–870 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Reyes, J. et al. Effect of saliva fluid properties on pathogen transmissibility. Sci. Rep. 11, 16051 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mocarski, E. S., Shenk, T., Griffiths, P. D. & Pass, R. F. in Fields Virology (eds Knipe, D. M. & Howley, P.) 1960–2014 (Lippincott Williams & Wilkins, 2013).

  • Minta, A. A. et al. Progress toward measles elimination — worldwide, 2000–2022. MMWR Morb. Mortal. Wkly Rep. 72, 1262–1268 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobson, J. S. & Levell, N. J. Spotting Zika spots: descriptive features of the rash used in 66 published cases. Clin. Exp. Dermatol. 44, 4–12 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kidd, S. et al. Enterovirus D68-associated acute flaccid myelitis, United States, 2020. Emerg. Infect. Dis. 26, e201630 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, R. M. et al. Estimated prevalence and incidence of disease-associated human papillomavirus types among 15- to 59-year-olds in the United States. Sex. Transm. Dis. 48, 273–277 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rautava, J. & Syrjänen, S. Human papillomavirus infections in the oral mucosa. J. Am. Dent. Assoc. 142, 905–914 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Berman, T. A. & Schiller, J. T. Human papillomavirus in cervical cancer and oropharyngeal cancer: one cause, two diseases. Cancer 123, 2219–2229 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hennessey, P. T., Westra, W. H. & Califano, J. A. Human papillomavirus and head and neck squamous cell carcinoma: recent evidence and clinical implications. J. Dent. Res. 88, 300–306 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howley, P. M., Schiller, J. T. & Lowy, D. R. in Fields Virology (eds Knipe, D. M. & Howley, P.) 1662–1703 (Lippincott Williams & Wilkins, 2013).

  • Phiri, R., Feller, L. & Blignaut, E. The severity, extent and recurrence of necrotizing periodontal disease in relation to HIV status and CD4+ T cell count. J. Int. Acad. Periodontol. 12, 98–103 (2010).

    PubMed 

    Google Scholar 

  • Feller, L. et al. Oral ulcers and necrotizing gingivitis in relation to HIV-associated neutropenia: a review and an illustrative case. AIDS Res. Hum. Retroviruses 28, 346–351 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Mitjà, O. et al. Mpox in people with advanced HIV infection: a global case series. Lancet 401, 939–949 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Coppenhaver, D. H., Sriyuktasuth-Woo, P., Baron, S., Barr, C. E. & Qureshi, M. N. Correlation of nonspecific antiviral activity with the ability to isolate infectious HIV-1 from saliva. N. Engl. J. Med. 330, 1314–1315 (1994).

    Article 
    PubMed 

    Google Scholar 

  • Baron, S., Poast, J. & Cloyd, M. W. Why is HIV rarely transmitted by oral secretions?: Saliva can disrupt orally shed, infected leukocytes. Arch. Intern. Med. 159, 303–310 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Kim, J. S. et al. Saliva can mediate HIV-1-specific antibody-dependent cell-mediated cytotoxicity. FEMS Immunol. Med. Microbiol. 48, 267–273 (2006).

    Article 
    PubMed 

    Google Scholar