close
close

Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii | BMC Infectious Diseases

  • Jiang L, Xu Q, Wu Y, Zhou X, Chen Z, Sun Q, et al. Characterization of a Straboviridae phage vB_AbaM-SHI and its inhibition effect on biofilms of Acinetobacter baumannii. Front Cell Infect Microbiol. 2024;14:1351993.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30:409–47.

    Article 
    PubMed 

    Google Scholar 

  • Mohebi S, Golestani-Hotkani Z, Foulad-Pour M, Nazeri P, Mohseni F, Hashemizadeh Z, et al. Characterization of integrons, extended spectrum beta lactamases and genetic diversity among uropathogenic Escherichia coli isolates from Kerman, South East of Iran. Iran J Microbiol. 2023;15:616.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ran B, Yuan Y, Xia W, Li M, Yao Q, Wang Z, et al. A photo-sensitizable phage for multidrug-resistant Acinetobacter baumannii therapy and biofilm ablation. Chem Sci. 2021;12:1054–61.

    Article 

    Google Scholar 

  • Spellberg B, Bonomo RA. Combination therapy for extreme drug resistant (XDR) Acinetobacter baumannii: ready for Prime-Time? Crit Care Med. 2015;43:1332.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blasco L, Bleriot I, González de Aledo M, Fernández-García L, Pacios O, Oliveira H, et al. Development of an anti-acinetobacter baumannii biofilm phage cocktail: genomic adaptation to the host. Antimicrob Agents Chemother. 2022;66:e01923–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin J, Prabhakaran V-S, Kim K. The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microb Pathog. 2018;116:209–14.

    Article 
    PubMed 

    Google Scholar 

  • Wintachai P, Voravuthikunchai SP. Characterization of novel lytic myoviridae phage infecting multidrug-resistant Acinetobacter baumannii and synergistic antimicrobial efficacy between phage and Sacha Inchi oil. Pharmaceuticals. 2022;15:291.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gauba A, Rahman KM. Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics. 2023;12:1590.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajinezhad MR, Roostaee M, Nikfarjam Z, Rastegar S, Sargazi G, Barani M et al. Exploring the potential of silymarin-loaded nanovesicles as an effective drug delivery system for cancer therapy: in vivo, in vitro, and in silico experiments. Naunyn Schmiedebergs Arch Pharmacol. 2024;397:1–20.

  • Blasco L, Ambroa A, Trastoy R, Bleriot I, Moscoso M, Fernández-Garcia L, et al. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep. 2020;10:7163.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sime-Ngando T. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol. 2014;5:355.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mardiana M, Teh S-H, Tsai Y-C, Yang H-H, Lin L-C, Lin N-T. Characterization of a novel and active temperate phage vB_AbaM_ABMM1 with antibacterial activity against Acinetobacter baumannii infection. Sci Rep. 2023;13:11347.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45–61.

  • Lai M-J, Lin N-T, Hu A, Soo P-C, Chen L-K, Chen L-H, et al. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl Microbiol Biotechnol. 2011;90:529–39.

    Article 
    PubMed 

    Google Scholar 

  • Oliveira H, Vilas Boas D, Mesnage S, Kluskens LD, Lavigne R, Sillankorva S, et al. Structural and enzymatic characterization of ABgp46, a novel phage endolysin with broad anti-gram-negative bacterial activity. Front Microbiol. 2016;7:208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali Y, Inusa I, Sanghvi G, Mandaliya VB, Bishoyi AK. The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens. Microb Pathog. 2023;181:106199.

    Article 
    PubMed 

    Google Scholar 

  • Ross A, Ward S, Hyman P. More is better: selecting for broad host range bacteriophages. Front Microbiol. 2016;7:1352.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against pathogenic bacterial biofilms and biofilm-based infections: a review. Pharmaceutics. 2022;14:427.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vukotic G, Obradovic M, Novovic K, Di Luca M, Jovcic B, Fira D, et al. Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Front Med. 2020;7:426.

    Article 

    Google Scholar 

  • Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017;101:3103–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan K, Abedon BT. Bacteriophages and their enzymes in biofilm control. Curr Pharm Des. 2015;21:85–99.

    Article 
    PubMed 

    Google Scholar 

  • Yuan Y, Li X, Wang L, Li G, Cong C, Li R, et al. The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity. Microb Biotechnol. 2021;14:403–18.

    Article 
    PubMed 

    Google Scholar 

  • Mukhopadhyay S, Zhang P, To KKW, Liu Y, Bai C, Leung SSY. Sequential treatment effects on phage–antibiotic synergistic application against multi-drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2023;62:106951.

    Article 
    PubMed 

    Google Scholar 

  • Sakib S, Shounak SK. The combination of bacteriophage therapy and antibiotic therapy. 2021.

  • Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10:351.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rastegar S, Skurnik M, Niaz H, Tadjrobehkar O, Samareh A, Hosseini-Nave H et al. Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains. Virus Genes. 2024;:1–12.

  • Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol. 2019;10:574.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol. 2016;7:1024.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahman M, Kim S, Kim SM, Seol SY, Kim J. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling. 2011;27:1087–93.

    Article 
    PubMed 

    Google Scholar 

  • Asaad AM, Ansari S, Ajlan SE, Awad SM. Epidemiology of biofilm producing Acinetobacter baumannii nosocomial isolates from a tertiary care hospital in Egypt: a cross-sectional study. Infect Drug Resist. 2021;14:709–17.

  • Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F. Reduction of Escherichia coli O157: H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol. 2011;145:37–42.

    Article 
    PubMed 

    Google Scholar 

  • Chen X, Liu M, Zhang P, Xu M, Yuan W, Bian L, et al. Phage-derived depolymerase as an antibiotic adjuvant against multidrug-resistant Acinetobacter baumannii. Front Microbiol. 2022;13:845500.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long L, Sulaiman JE, Xiao Y, Cheng A, Wang R, Malit JJ, et al. Mode of action of elasnin as biofilm formation eradicator of methicillin-resistant Staphylococcus aureus. Front Microbiol. 2022;13:967845.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stiefel P, Rosenberg U, Schneider J, Mauerhofer S, Maniura-Weber K, Ren Q. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Appl Microbiol Biotechnol. 2016;100:4135–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrestha L, Fan H-M, Tao H-R, Huang J-D. Recent strategies to combat biofilms using antimicrobial agents and therapeutic approaches. Pathogens. 2022;11:292.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly D, McAuliffe O, Ross RP, Coffey A. Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol. 2012;54:286–91.

    Article 
    PubMed 

    Google Scholar 

  • Sutherland IW. Polysaccharases for microbial exopolysaccharides. Carbohydr Polym. 1999;38:319–28.

    Article 

    Google Scholar 

  • Pires DP, Melo LDR, Boas DV, Sillankorva S, Azeredo J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol. 2017;39:48–56.

    Article 
    PubMed 

    Google Scholar 

  • Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii infection. Front Med. 2022;9:793615.

    Article 

    Google Scholar 

  • Yang C-H, Su P-W, Moi S-H, Chuang L-Y. Biofilm formation in Acinetobacter Baumannii: genotype-phenotype correlation. Molecules. 2019;24:1849.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gedefie A, Demsis W, Ashagrie M, Kassa Y, Tesfaye M, Tilahun M et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infect Drug Resist. 2021;14:3711–9.

  • Rao RS, Karthika RU, Singh SP, Shashikala P, Kanungo R, Jayachandran S, et al. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J Med Microbiol. 2008;26:333–7.

    Article 
    PubMed 

    Google Scholar 

  • Blasco L, Ambroa A, Lopez M, Fernandez-Garcia L, Bleriot I, Trastoy R, et al. Combined use of the Ab105-2φ∆CI lytic mutant phage and different antibiotics in clinical isolates of multi-resistant Acinetobacter baumannii. Microorganisms. 2019;7:556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kifelew LG, Warner MS, Morales S, Gordon DL, Thomas N, Mitchell JG, et al. Lytic activity of phages against bacterial pathogens infecting diabetic foot ulcers. Sci Rep. 2024;14:3515.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreau-Marquis S, O’Toole GA, Stanton BA. Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol. 2009;41:305–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yele AB, Thawal ND, Sahu PK, Chopade BA. Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. Arch Virol. 2012;157:1441–50.

    Article 
    PubMed 

    Google Scholar 

  • Sharma N, Thapa B, Acharya A, Raghubanshi BR. Meropenem Resistance among Acinetobacter positive clinical samples in a Tertiary Care Centre in Nepal: a descriptive cross-sectional study. JNMA J Nepal Med Assoc. 2021;59:853.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol. 2012;65:395–8.

    Article 
    PubMed 

    Google Scholar 

  • Vashisth M, Yashveer S, Jaglan AB, Virmani N, Bera BC, Vaid RK, et al. Synergy of a virulent phage (φAB182) with antibiotics leading to successful elimination of biofilms formed by MDR Acinetobacter baumannii. Can J Microbiol. 2022;68:731–46.

    Article 
    PubMed 

    Google Scholar 

  • Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, et al. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals. 2023;16:1230.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018;11:1249.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wences M, Wolf ER, Li C, Singh N, Bah N, Tan X, et al. Combatting planktonic and biofilm populations of carbapenem-resistant Acinetobacter baumannii with polymyxin-based combinations. Antibiotics. 2022;11:959.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26:2671.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang L, Chen Y, Han R, Huang Z, Zhang X, Hu F et al. Sulbactam enhances in vitro activity of β-lactam antibiotics against Acinetobacter baumannii. Infect Drug Resist. 2021;14:3971–7.

  • Weber L, Jansen M, Krüttgen A, Buhl EM, Horz H-P. Tackling intrinsic antibiotic resistance in serratia marcescens with a combination of ampicillin/sulbactam and phage SALSA. Antibiotics. 2020;9:371.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, et al. Phage-encoded endolysins. Antibiotics. 2021;10:124.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, et al. Bacteriophages and biofilms. Antibiotics. 2014;3:270–84.

    Article 
    PubMed Central 

    Google Scholar 

  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15:453–64.

    Article 
    PubMed 

    Google Scholar 

  • Lewis K. Multidrug tolerance of biofilms and persister cells. Bact Biofilms. 2008;322:107–31.

  • Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, et al. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol. 2023 ;194:104249.

  • Kaldalu N, Hauryliuk V, Turnbull KJ, La Mensa A, Putrinš M, Tenson T. In vitro studies of persister cells. Microbiol Mol Biol Rev. 2020;84:10–1128.

    Article 

    Google Scholar 

  • Chen B, Benavente LP, Chittò M, Wychowaniec JK, Post V, D’Este M, et al. Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections. J Control Release. 2023;364:159–73.

    Article 
    PubMed 

    Google Scholar 

  • Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAM. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med. 2016;52:99–105.

    Article 

    Google Scholar 

  • Luo J, Liu M, Ai W, Zheng X, Liu S, Huang K, et al. Synergy of lytic phage pB23 and meropenem combination against carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2024;68:e00448–24.

    Google Scholar 

  • De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, et al. Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiol Spectr. 2024;12:e03219–23.

    PubMed 

    Google Scholar 

  • Grygorcewicz B, Wojciuk B, Roszak M, Łubowska N, Błażejczak P, Jursa-Kulesza J, et al. Environmental phage-based cocktail and antibiotic combination effects on Acinetobacter baumannii biofilm in a human urine model. Microb Drug Resist. 2021;27:25–35.

    Article 
    PubMed 

    Google Scholar 

  • Soontarach R, Nwabor OF, Voravuthikunchai SP. Interaction of lytic phage T1245 with antibiotics for enhancement of antibacterial and anti-biofilm efficacy against multidrug-resistant Acinetobacter baumannii. Biofouling. 2022;38:994–1005.

    Article 
    PubMed 

    Google Scholar 

  • Impey RE, Hawkins DA, Sutton JM, Soares da Costa TP. Overcoming intrinsic and acquired resistance mechanisms associated with the cell wall of gram-negative bacteria. Antibiotics. 2020;9:623.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci. 2021;46:85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He X, Lu F, Yuan F, Jiang D, Zhao P, Zhu J, et al. Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrob Agents Chemother. 2015;59:4817–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sabnis A, Hagart KLH, Klöckner A, Becce M, Evans LE, Furniss RCD, et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife. 2021;10:e65836.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danis-Wlodarczyk K, Vandenheuvel D, Jang H, Bin, Briers Y, Olszak T, Arabski M, et al. A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Sci Rep. 2016;6:28115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shenkutie AM, Yao MZ, Siu GK, Wong BKC, Leung PH. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics. 2020;9:817.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández L, Gutiérrez D, García P, Rodríguez A. The perfect bacteriophage for therapeutic applications—a quick guide. Antibiotics. 2019;8:126.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng W, Zeng F, Wu Z, Jin Z, Li W, Zhu M, et al. Isolation and genomic analysis of temperate phage 5 W targeting multidrug-resistant Acinetobacter baumannii. Arch Microbiol. 2022;204:1–11.

    Article 

    Google Scholar 

  • Zhang L, Shahin K, Soleimani-Delfan A, Ding H, Wang H, Sun L, et al. Phage JS02, a putative temperate phage, a novel biofilm‐degrading agent for Staphylococcus aureus. Lett Appl Microbiol. 2022;75:643–54.

    Article 
    PubMed 

    Google Scholar 

  • Al-Anany AM, Fatima R, Hynes AP. Temperate phage-antibiotic synergy eradicates bacteria through depletion of lysogens. Cell Rep. 2021;35.

  • Bagińska N, Grygiel I, Orwat F, Harhala MA, Jędrusiak A, Gębarowska E, et al. Stability study in selected conditions and biofilm-reducing activity of phages active against drug-resistant Acinetobacter baumannii. Sci Rep. 2024;14:4285.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdurahman M, Tosun I, Durukan I, Khorshidtalab M, Kılıç ALİ. Four temperate bacteriophages from methicillin-resistant Staphylococcus aureus show broad bactericidal and biofilm removal activities. Kafkas Univ Vet Fak Derg. 2021;27.