close
close

Eukaryotic viruses encode the ribosomal protein eL40

  • Aylward, F. O., Moniruzzaman, M., Ha, A. D. & Koonin, E. V. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol. 19, e3001430 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Philippe, N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341, 281–286 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Legendre, M. et al. Pandoravirus Celtis illustrates the microevolution processes at work in the giant Pandoraviridae Genomes. Front. Microbiol. 10, 430 (2019).

  • Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanc-Mathieu, R. et al. A persistent giant algal virus, with a unique morphology, encodes an unprecedented number of genes involved in energy metabolism. J. Virol. (2021).

  • Weynberg, K. D., Allen, M. J., Ashelford, K., Scanlan, D. J. & Wilson, W. H. From small hosts come big viruses: the complete genome of a second Ostreococcus tauri virus, OtV-1. Environ. Microbiol. 11, 2821–2839 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weynberg, K. D., Allen, M. J., Gilg, I. C., Scanlan, D. J. & Wilson, W. H. Genome sequence of Ostreococcus tauri virus OtV-2 throws light on the role of picoeukaryote niche separation in the ocean. J. Virol. 85, 4520–4529 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreau, H. et al. Marine prasinovirus genomes show low evolutionary divergence and acquisition of protein metabolism genes by horizontal gene transfer. J. Virol. 84, 12555–12563 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yutin, N. & Koonin, E. V. Proteorhodopsin genes in giant viruses. Biol. Direct 7, 34 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Philosof, A. & Béjà, O. Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ. Microbiol. Rep. 5, 475–482 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bratanov, D. et al. Unique structure and function of viral rhodopsins. Nat. Commun. 10, 4939 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rozenberg, A. et al. Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses. Curr. Biol. (2020).

  • Zabelskii, D. et al. Structure-based insights into evolution of rhodopsins. Commun. Biol. 4, 1–12 (2021).

    Article 

    Google Scholar 

  • Monier, A. et al. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res. 19, 1441–1449 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vardi, A. et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326, 861–865 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kijima, S. et al. Discovery of viral myosin genes with complex evolutionary history within plankton. Front. Microbiol. 12, 683294 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Da Cunha, V. et al. Giant viruses encode actin-related proteins. Mol. Biol. Evol. 39, msac022 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schvarcz, C. R. & Steward, G. F. A giant virus infecting green algae encodes key fermentation genes. Virology 518, 423–433 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Claverie, J.-M. & Abergel, C. Mimivirus: the emerging paradox of quasi-autonomous viruses. Trends Genet. 26, 431–437 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aylward, F. O. et al. Taxonomic update for giant viruses in the order Imitervirales (phylum Nucleocytoviricota). Arch. Virol. 168, 283 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raoult, D. et al. The 1.2-megabase genome sequence of mimivirus. Science 306, 1344–1350 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bajrai, L. H. et al. Isolation of yasminevirus, the first member of Klosneuvirinae Isolated in coculture with vermamoeba vermiformis, demonstrates an extended arsenal of translational apparatus components. J. Virol. 94, e01534-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schulz, F. et al. Giant viruses with an expanded complement of translation system components. Science 356, 82–85 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mizuno, C. M. et al. Numerous cultivated and uncultivated viruses encode ribosomal proteins. Nat. Commun. 10, 752 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mourtada-Maarabouni, M., Kirkham, L., Farzaneh, F. & Williams, G. T. Regulation of apoptosis by fau revealed by functional expression cloning and antisense expression. Oncogene 23, 9419–9426 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moniruzzaman, M. et al. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol. Rev. 47, fuad053 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yau, S. et al. Virophage control of antarctic algal host–virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lecompte, O., Ripp, R., Thierry, J., Moras, D. & Poch, O. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 30, 5382–5390 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ha, A. D., Moniruzzaman, M. & Aylward, F. O. High transcriptional activity and diverse functional repertoires of hundreds of giant viruses in a coastal marine system. mSystems (2021).

  • Lauersen, K. J. et al. Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res. 16, 266–274 (2016).

    Article 

    Google Scholar 

  • Boyle, N. R., Sengupta, N. & Morgan, J. A. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS ONE 12, e0177292 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strauss, J. et al. Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans. Nat. Microbiol. (2023).

  • Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & DeLong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, L. S. & Ernst, O. P. Recent advances in biophysical studies of rhodopsins – oligomerization, folding, and structure. Biochim. Biophys. Acta Proteins Proteom. 1865, 1512–1521 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martiny, J. B. H., Riemann, L., Marston, M. F. & Middelboe, M. Antagonistic coevolution of marine planktonic viruses and their hosts. Ann. Rev. Mar. Sci. 6, 393–414 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Frickel, J., Sieber, M. & Becks, L. Eco-evolutionary dynamics in a coevolving host–virus system. Ecol. Lett. 19, 450–459 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Friman, V.-P. & Buckling, A. Effects of predation on real-time host–parasite coevolutionary dynamics. Ecol. Lett. 16, 39–46 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Miller, C. M., Selvam, S. & Fuchs, G. Fatal attraction: the roles of ribosomal proteins in the viral life cycle. Wiley Interdiscip. Rev. RNA 12, e1613 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X., Zhu, J., Zhang, D. & Liu, G. Ribosomal control in RNA virus-infected cells. Front. Microbiol. 13, 1026887 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L.-X. et al. Phage-encoded ribosomal protein S21 expression is linked to late-stage phage replication. ISME Commun. 2, 1–10 (2022).

    Article 

    Google Scholar 

  • Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol. 19, e3001442 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michiels, L., Van der Rauwelaert, E., Van Hasselt, F., Kas, K. & Merregaert, J. fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus. Oncogene 8, 2537–2546 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Martín-Villanueva, S., Gutiérrez, G., Kressler, D. & de la Cruz, J. Ubiquitin and ubiquitin-like proteins and domains in ribosome production and function: chance or necessity? Int J. Mol. Sci. 22, 4359 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández-Pevida, A., Rodríguez-Galán, O., Díaz-Quintana, A., Kressler, D. & de la Cruz, J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J. Biol. Chem. 287, 38390–38407 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. Ribosomal protein L40e fused with a ubiquitin moiety is essential for the vegetative growth, morphological homeostasis, cell cycle progression, and pathogenicity of Cryptococcus neoformans. Front. Microbiol. 11, 570269 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, A. S.-Y., Burdeinick-Kerr, R. & Whelan, S. P. J. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc. Natl Acad. Sci. USA 110, 324–329 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 117, 156–184 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lant, S. & Maluquer de Motes, C. Poxvirus interactions with the host ubiquitin system. Pathogens 10, 1034 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, S. S. & Williamson, J. R. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J. Mol. Biol. 425, 767–779 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watson, Z. L. et al. Structure of the bacterial ribosome at 2 Å resolution. eLife 9, e60482 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreani, J. et al. Orpheovirus IHUMI-LCC2: a new virus among the giant viruses. Front. Microbiol. 8, 2643 (2018).

  • Schvarcz, C. R. Cultivation And Characterization Of Viruses Infecting Eukaryotic Phytoplankton From The Tropical North Pacific Ocean (2018).

  • Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res. Part II: Top. Stud. Oceanogr. 43, 129–156 (1996).

    Article 
    CAS 

    Google Scholar 

  • Keller, M. D., Selvin, R. C., Claus, W. & Guillard, R. R. L. Media for the culture of oceanic ultraphytoplankton1,2. J. Phycol. 23, 633–638 (1987).

    Article 

    Google Scholar 

  • Moon-van der Staay, S. Y., De Wachter, R. & Vaulot, D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607–610 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Worden, A. Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat. Microb. Ecol. 43, 165–175 (2006).

    Article 

    Google Scholar 

  • Lawrence, J. E. & Steward, G. F. Manual of Aquatic Viral Ecology (eds. Wilhelm, S., Weinbauer, M. & Suttle, C.) 166–181 (American Society of Limnology and Oceanography, 2010).

  • Patel, A. et al. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2, 269–276 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–689 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kans, J. Entrez Direct: E-Utilities on the Unix Command Line. Entrez Programming Utilities Help [Internet] (National Center for Biotechnology Information (US), 2021).

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature (2020).

  • Gaïa, M. et al. Mirusviruses link herpesviruses to giant viruses. Nature 616, 783–789 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. KaKs_Calculator 3.0: calculating selective pressure on coding and non-coding sequences. Genom. Proteom. Bioinform. 20, 536–540 (2022).

    Article 
    CAS 

    Google Scholar 

  • Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemoine, F. & Gascuel, O. Gotree/Goalign: toolkit and Go API to facilitate the development of phylogenetic workflows. NAR Genom. Bioinform. 3, lqab075 (2021).

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar