close
close

An advanced real-time crash prediction framework for combined hard shoulder running and variable speed limits system using transformer

  • Li, Y., Chow, A. H. & Cassel, D. L. Optimal control of motorways by ramp metering, variable speed limits, and hard-shoulder running. Transp. Res. Rec.2470 (1), 122–130 (2014).

    Article 

    Google Scholar 

  • Zhou, W., Yang, M., Lee, M. & Zhang, L. Q-learning-based coordinated variable speed limit and hard shoulder running control strategy to reduce travel time at freeway corridor. Transp. Res. Rec.2674 (11), 915–925 (2020).

    Article 

    Google Scholar 

  • Wang, L., Abdel-Aty, M. & Lee, J. Implementation of active traffic management strategies for safety on congested expressway weaving segments. Transp. Res. Rec.2635 (1), 28–35 (2017).

    Article 

    Google Scholar 

  • Hauer, E., Kononov, J., Allery, B. & Griffith, M. S. Screening the road network for sites with promise. Transp. Res. Rec.1784 (1), 27–32 (2002).

    Article 

    Google Scholar 

  • Cai, Q., Abdel-Aty, M., Yuan, J., Lee, J. & Wu, Y. Real-time crash prediction on expressways using deep generative models. Transp. Res. part. C: Emerg. Technol.117, 102697 (2020).

    Article 

    Google Scholar 

  • Wang, L., Abdel-Aty, M. & Lee, J. Safety analytics for integrating crash frequency and real-time risk modeling for expressways. Accid. Anal. Prev.104, 58–64 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, J., Abdel-Aty, M., Gong, Y. & Cai, Q. Real-time crash risk prediction using long short-term memory recurrent neural network. Transp. Res. Rec.2673 (4), 314–326 (2019).

    Article 

    Google Scholar 

  • Abdel-Aty, M., Pande, A. & Hsia, L. The concept of proactive traffic management for enhancing freeway safety and operation. ITE J.80 (4), 34 (2010).

    Google Scholar 

  • Pande, A. & Abdel-Aty, M. A freeway safety strategy for advanced proactive traffic management. J. Intell. Transp. Syst.9 (3), 145–158 (2005).

    Article 

    Google Scholar 

  • Abdel-Aty, M., Cunningham, R. J., Gayah, V. V. & Hsia, L. Dynamic variable speed limit strategies for real-time crash risk reduction on freeways. Transp. Res. Rec.2078 (1), 108–116 (2008).

    Article 

    Google Scholar 

  • Abdel-Aty, M., Dilmore, J. & Dhindsa, A. Evaluation of variable speed limits for real-time freeway safety improvement. Accid. Anal. Prev.38 (2), 335–345 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Hasan, T., Abdel-Aty, M. & Mahmoud, N. Freeway Crash Prediction models with Variable Speed Limit/Variable Advisory Speed. J. Transp. Eng. Part. A: Syst.149 (3), 04022159. (2023).

    Article 

    Google Scholar 

  • Pu, Z., Li, Z., Jiang, Y. & Wang, Y. Full bayesian before-after analysis of safety effects of variable speed limit system. IEEE Trans. Intell. Transp. Syst.22 (2), 964–976 (2020).

    Article 

    Google Scholar 

  • Saha, P. & Young, R. K. Weather-based safety analysis for the effectiveness of rural vsl corridors. in 93rd Annual Meeting of the Transportation Research Board, Washington, DC. (2014).

  • Hasan, M. T. Safety Considerations for Setting Variable Speed Limits on Freeways. University of Central Florida: Graduate Thesis and Dissertation 2023–2024. URL: (2023). https://stars.library.ucf.edu/etd2023/39

  • Choi, J. et al. Saf. Eff. Freeway Hard Shoulder Running Appl. Sci., 9(17): 3614. (2019).

    Google Scholar 

  • Jenior, P. et al. Safety Performance of Part-Time Shoulder Use on Freeways, Volume 2: Conduct of Research Report (No. NCHRP Project 17–89) (Transportation Research Board, 2021).

  • Hasan, T. & Abdel-Aty, M. Short-term safety performance functions by random parameters negative binomial-Lindley model for part-time shoulder use. Accid. Anal. Prev.199, 107498. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Hasan, T. & Hoque, M. S. Study on Traffic Congestion Parameters at Local Conditions Using Kerner’s Three-Phase Traffic Flow Theory, in BUET-ANWAR ISPAT 1st Bangladesh Civil Engineering SUMMIT (Dhaka, 2023).

  • Yuan, J. et al. Developing safety performance functions for freeways at different aggregation levels using multi-state microscopic traffic detector data. Accid. Anal. Prev.151, 105984 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Abdel-Aty, M., Haleem, K., Cunningham, R. & Gayah, V. Application of variable speed limits and ramp metering to improve safety and efficiency of freeways. in 2nd International Symposium on Freeway and Tollway Operations. (2009).

  • Arora, K. & Kattan, L. Operational and safety impacts of integrated variable speed limit with dynamic hard shoulder running. J. Intell. Transp. Syst., : pp. 1–30. (2022).

  • Waller, S. T., Ng, M., Ferguson, E., Nezamuddin, N. & Sun, D. Speed Harmonization and peak-period Shoulder use to Manage Urban Freeway Congestion (University of Texas at Austin. Center for Transportation Research, 2009).

  • Lu, X. Y., Varaiya, P., Horowitz, R., Su, D. & Shladover, S. E. Novel freeway traffic control with variable speed limit and coordinated ramp metering. Transp. Res. Rec.2229 (1), 55–65 (2011).

    Article 

    Google Scholar 

  • Ma, M., Yang, Q., Liang, S. & Li, Z. Integrated variable speed limits control and ramp metering for bottleneck regions on freeway. Mathematical Problems in Engineering, 2015. (2015).

  • Sun, J., Zhang, S. & Tang, K. Online evaluation of an integrated control strategy at on-ramp bottleneck for urban expressways in Shanghai. Intell. Transp. Syst.8 (8), 648–654 (2014).

    Article 

    Google Scholar 

  • Haj-Salem, H., Farhi, N. & Lebacque, J. Combining ramp metering and hard shoulder strategies: field evaluation results on the ile the France motorway network. Transp. Res. Procedia. 3, 1002–1010 (2014).

    Article 

    Google Scholar 

  • Lee, J. T., Dittberner, R. & Sripathi, H. Safety impacts of freeway managed-lane strategy: inside lane for high-occupancy vehicle use and right shoulder lane as travel lane during peak periods. Transp. Res. Rec.2012 (1), 113–120 (2007).

    Article 

    Google Scholar 

  • Das, S., Geedipally, S. R. & Fitzpatrick, K. Inclusion of speed and weather measures in safety performance functions for rural roadways. IATSS Res.45 (1), 60–69 (2021).

    Article 

    Google Scholar 

  • Wang, L., Abdel-Aty, M., Wang, X. & Yu, R. Analysis and comparison of safety models using average daily, average hourly, and microscopic traffic. Accid. Anal. Prev.111, 271–279 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Jonsson, T., Ivan, J. N. & Zhang, C. Crash prediction models for intersections on rural multilane highways: differences by collision type. Transp. Res. Rec.2019 (1), 91–98 (2007).

    Article 

    Google Scholar 

  • Guo, F., Wang, X., A.J.A.A., M. & Abdel-Aty Modeling signalized intersection safety with corridor-level spatial correlations. Accid. Anal. Prev.42 (1), 84–92 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Rim, H., Abdel-Aty, M. & Mahmoud, N. Multi-vehicle Safety Functions for Freeway Weaving Segments Using lane-level Traffic data188p. 107113 (Accident Analysis & Prevention, 2023).

  • Qi, Y., Liu, J. & Wang, Y. Safety Performance for Freeway Weaving Segments (Texas A&M Transportation Institute, 2014).

  • Wang, L. & Abdel-Aty, M. Microscopic safety evaluation and prediction for freeway-to-freeway interchange ramps. Transp. Res. Rec.2583 (1), 56–64 (2016).

    Article 

    Google Scholar 

  • Abdel-Aty, M. et al. Development of Crash Prediction Models for Short-term Durations. DOI: (2023). https://doi.org/10.17226/27402

  • Faden, A., Abdel-Aty, M., Mahmoud, N., Hasan, T. & Rim, H. Multivariate Poisson-Lognormal models for Predicting Peak-Period Crash frequency of Joint On-Ramp and merge segments on freeways. Transp. Res. Rec.2678 (3), 133–147. (2023).

    Article 

    Google Scholar 

  • Hasan, T., Abdel-Aty, M. & Mahmoud, N. Multivariate Approach to Peak-Period models for Crash types and severities in variable Speed systems on freeways. Transp. Res. Rec.2678 (5), 362–380. (2023).

    Article 

    Google Scholar 

  • Hasan, M. T. Safety Evaluation of Active Traffic Management Strategies on Freeways by Short-Term Crash Prediction Models. 2023, University of Central Florida. URL: https://stars.library.ucf.edu/etd2023/247

  • Kwak, H. C. & Kho, S. Predicting crash risk and identifying crash precursors on Korean expressways using loop detector data. Accid. Anal. Prev.88, 9–19 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Xie, W., Wang, J. & Ragland, D. R. Utilizing the eigenvectors of freeway loop data spatiotemporal schematic for real time crash prediction. Accid. Anal. Prev.94, 59–64 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Abdel-Aty, M., Uddin, N., Pande, A., Abdalla, M. F. & Hsia, L. Predicting freeway crashes from loop detector data by matched case-control logistic regression. Transp. Res. Rec.1897 (1), 88–95 (2004).

    Article 

    Google Scholar 

  • Xu, C., Tarko, A. P., Wang, W. & Liu, P. Predicting crash likelihood and severity on freeways with real-time loop detector data. Accid. Anal. Prev.57, 30–39 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Shi, Q. & Abdel-Aty, M. Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transp. Res. Part. C: Emerg. Technol.58, 380–394 (2015).

    Article 

    Google Scholar 

  • Yu, R., Wang, X., Yang, K. & Abdel-Aty, M. Crash risk analysis for Shanghai urban expressways: a bayesian semi-parametric modeling approach. Accid. Anal. Prev.95, 495–502 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, J. & Abdel-Aty, M. Approach-level real-time crash risk analysis for signalized intersections. Accid. Anal. Prev.119, 274–289 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Anik, B. M., Islam, Z. & Abdel-Aty, M. inTformer: a time-embedded attention-based transformer for Crash Likelihood Prediction at intersections using connected Vehicle Data. arXiv preprint arXiv:2307.03854, 2023.

  • Lee, C. & Abdel-Aty, M. Two-level nested logit model to identify traffic flow parameters affecting crash occurrence on freeway ramps. Transp. Res. Rec.2083 (1), 145–152 (2008).

    Article 

    Google Scholar 

  • Wang, L., Shi, Q. & Abdel-Aty, M. Predicting crashes on expressway ramps with real-time traffic and weather data. Transp. Res. Rec.2514 (1), 32–38 (2015).

    Article 

    Google Scholar 

  • Wang, J. et al. Crash prediction for freeway work zones in real time: a comparison between Convolutional Neural Network and binary logistic regression model. Int. J. Transp. Sci. Technol.11 (3), 484–495 (2022).

    Article 

    Google Scholar 

  • Yu, R. & Abdel-Aty, M. Analyzing crash injury severity for a mountainous freeway incorporating real-time traffic and weather data. Saf. Sci.63, 50–56 (2014).

    Article 

    Google Scholar 

  • Theofilatos, A. Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials. J. Saf. Res.61, 9–21 (2017).

    Article 

    Google Scholar 

  • Yu, R. & Abdel-Aty, M. Using hierarchical bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data. Accid. Anal. Prev.62, 161–167 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Kidando, E. et al. Prediction of Vehicle Occupants Injury at Signalized Intersections Using real-time Traffic and Signal data149p. 105869 (Accident Analysis & Prevention, 2021).

  • Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S. & Mohammadian, A. K. Toward Safer Highways, Application of XGBoost and SHAP for real-time Accident Detection and Feature Analysis136p. 105405 (Accident Analysis & Prevention, 2020).

  • Singh, J., Singh, G., Singh, P. & Kaur, M. Evaluation and classification of road accidents using machine learning techniques. in Emerging Research in Computing, Information, Communication and Applications: ERCICA 2018, Volume 1. Springer. (2019).

  • Theofilatos, A., Chen, C. & Antoniou, C. Comparing machine learning and deep learning methods for real-time crash prediction. Transp. Res. Rec.2673 (8), 169–178 (2019).

    Article 

    Google Scholar 

  • Yu, R., Wang, Y., Zou, Z. & Wang, L. Convolutional neural networks with refined loss functions for the real-time crash risk analysis. Transp. Res. part. C: Emerg. Technol.119, 102740 (2020).

    Article 

    Google Scholar 

  • Islam, Z., Abdel-Aty, M. & Anik, B. T. H. Transformer-conformer ensemble for Crash Prediction using connected vehicle Trajectory Data. IEEE Open. J. Intell. Transp. Syst., (2023).

  • Li, P., Abdel-Aty, M., Cai, Q. & Yuan, C. The Application of Novel Connected Vehicles Emulated data on real-time Crash Potential Prediction for Arterials144 (Accident Analysis & Prevention, 2020).

  • Li, P., Abdel-Aty, M. & Yuan, J. Real-time crash risk prediction on arterials based on LSTM-CNN. Accid. Anal. Prev.135, 105371 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kassens-Noor, E. et al. Evaluation of an Active Traffic Management System with Part-Time Use of the Inside Shoulder (Michigan Department of Transportation. Research Administration, 2022).

  • Fu, J., Abdel-Aty, M., Mahmoud, N. & Wu, Y. Short-term safety performance functions for freeways including high occupancy vehicle lanes. Transp. Res. Rec.2677 (1), 1634–1645 (2022).

    Article 

    Google Scholar 

  • Zhang, S. & Abdel-Aty, M. Real-time crash potential prediction on freeways using connected vehicle data. Analytic Methods Accid. Res.36, 100239 (2022).

    Article 

    Google Scholar 

  • Infante, P. et al. Comparison of statistical and machine-learning models on road traffic accident severity classification. Computers. 11 (5), 80 (2022).

    Article 

    Google Scholar 

  • Iranitalab, A. & Khattak, A. Comparison of four statistical and machine learning methods for crash severity prediction. Accid. Anal. Prev.108, 27–36 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lord, D. & Mannering, F. The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives. Transp. Res. part. A: Policy Pract.44 (5), 291–305 (2010).

    Google Scholar 

  • Mannering, F. L. & Bhat, C. R. Analytic methods in accident research: methodological frontier and future directions. Analytic Methods Accid. Res.1, 1–22 (2014).

    Article 

    Google Scholar 

  • Winkelmann, R. Econometric Analysis of Count data (Springer Science & Business Media, 2008).

  • Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. (2016).

  • Vaswani, A. et al. Attention is all you need. Adv. Neural. Inf. Process. Syst., 30. (2017).

  • Abdelraouf, A., Abdel-Aty, M. & Wu, Y. Using vision transformers for spatial-context-aware rain and road surface condition detection on freeways. IEEE Trans. Intell. Transp. Syst.23 (10), 18546–18556 (2022).

    Article 

    Google Scholar 

  • Gulati, A. et al. Conformer: Convolution-augmented transformer for speech recognition. arXiv preprint arXiv:.08100, 2020.

  • Xu, M. et al. Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:.02908, 2020.

  • Kazemi, S. M. et al. Time2vec: Learning a vector representation of time. arXiv preprint arXiv:.05321, (2019).

  • Ahsan, M. J., Abdel-Aty, M. & Anwari, N. Vehicle-pedestrian near miss analysis at signalized mid-block crossings. J. Saf. Res.91, 68–84 (2024).

    Article 

    Google Scholar