close
close

Characterization of a SARS-CoV-2 Omicron BA.5 direct-contact transmission model in hamsters

  • Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514–523 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, S. et al. Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters. Science 377, 428–433 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lin, L., Liu, Y., Tang, X. & He, D. The disease severity and clinical outcomes of the SARS-CoV-2 variants of concern. Front. Public Health 9, 775224 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrestha, L. B., Foster, C., Rawlinson, W., Tedla, N. & Bull, R. A. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev. Med. Virol. 32, e2381 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, M. et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 185, 447–456 e411 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jung, C. et al. Omicron: what makes the latest SARS-CoV-2 variant of concern so concerning? J. Virol. 96, e0207721 (2022).

    Article 
    PubMed 

    Google Scholar 

  • WHO (World Health Organization), Tracking SARS-CoV-2 Variants (2024).

  • Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).

    Article 
    PubMed 

    Google Scholar 

  • VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 28, 490–495 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmitz, K. S. et al. Potency of Fusion-inhibitory lipopeptides against SARS-CoV-2 variants of concern. mBio 13, e0124922 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dillard, J. A., Martinez, S. A., Dearing, J. J., Montgomery, S. A. & Baxter, V. K. Animal Models for the study of SARS-CoV-2-induced respiratory disease and pathology. Comp. Med. 73, 72–90 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiwari, S., Goel, G. & Kumar, A. Natural and genetically-modified animal models to investigate pulmonary and extrapulmonary manifestations of COVID-19. Int. Rev. Immunol. 43, 13–32 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, J., Rissmann, M., Kuiken, T. & Haagmans, B. L. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. Annu Rev Pathol 19, 423–451 (2024).

    Article 
    PubMed 

    Google Scholar 

  • McCray, P. B. Jr. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, (2020).

  • Chan, J. F. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis 71, 2428–2446 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Casel, M. A. B., Rollon, R. G. & Choi, Y. K. Experimental animal models of coronavirus infections: strengths and limitations. Immune Netw. 21, e12 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stadnytskyi, V., Bax, C. E., Bax, A. & Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl Acad. Sci. USA 117, 11875–11877 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uraki, R. et al. Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents. Nature 612, 540–545 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Su, W. et al. Reduced pathogenicity and transmission potential of omicron BA.1 and BA.2 sublineages compared with the early severe acute respiratory syndrome coronavirus 2 D614G variant in Syrian hamsters. J Infect Dis 227, 1143–1152 (2023).

    Article 
    PubMed 

    Google Scholar 

  • de Vries, R. D. et al. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 371, 1379–1382 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Doornum, G. J., Schutten, M., Voermans, J., Guldemeester, G. J. & Niesters, H. G. Development and implementation of real-time nucleic acid amplification for the detection of enterovirus infections in comparison to rapid culture of various clinical specimens. J. Med. Virol. 79, 1868–1876 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, (2020).

  • Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 27, 493–497 (1938).

    Article 

    Google Scholar 

  • Rockx, B. et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368, 1012–1015 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haagmans, B. L. et al. SARS-CoV-2 neutralizing human antibodies protect against lower respiratory tract disease in a Hamster model. J. Infect. Dis. 223, 2020–2028 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rosenke, K. et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect. 9, 2673–2684 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Port, J. R. et al. Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. Elife 12, (2024).

  • Cox, R. M. et al. Comparing molnupiravir and nirmatrelvir/ritonavir efficacy and the effects on SARS-CoV-2 transmission in animal models. Nat. Commun. 14, 4731 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 185, 2103–2115 e2119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelnabi, R. et al. Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine 68, 103403 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, D. R. et al. Intranasal SARS-CoV-2 RBD decorated nanoparticle vaccine enhances viral clearance in the Syrian hamster model. Microbiol. Spectr. 12, e0499822 (2024).

    Article 
    PubMed 

    Google Scholar 

  • O’Neill, A. et al. Mucosal SARS-CoV-2 vaccination of rodents elicits superior systemic T central memory function and cross-neutralising antibodies against variants of concern. EBioMedicine 99, 104924 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Knott, D. et al. Use of a preclinical natural transmission model to study antiviral effects of a carbohydrate-binding module therapy against SARS-CoV-2 in hamsters. Viruses 15, (2023).

  • Yuan, L. et al. Gender associates with both susceptibility to infection and pathogenesis of SARS-CoV-2 in Syrian hamster. Signal Transduct. Target Ther. 6, 136 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhakal, S. et al. Sex differences in lung imaging and SARS-CoV-2 antibody responses in a COVID-19 golden Syrian hamster model. mBio 12, e0097421 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Castellan, M. et al. Host Response of Syrian hamster to SARS-CoV-2 infection including differences with humans and between sexes. Viruses 15, (2023).

  • Solis, O. et al. The SARS-CoV-2 spike protein binds and modulates estrogen receptors. Sci. Adv. 8, eadd4150 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, L. et al. Female sex hormone, progesterone, ameliorates the severity of SARS-CoV-2-caused pneumonia in the Syrian hamster model. Signal Transduct. Target Ther. 7, 47 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uraki, R. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature 607, 119–127 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osterrieder, N. et al. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses 12 (2020).

  • Huo, J. et al. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat. Commun. 12, 5469 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, Z. et al. SARS-CoV-2 causes a systemically multiple organs damages and dissemination in Hamsters. Front. Microbiol. 11, 618891 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, H. et al. A trifunctional peptide broadly inhibits SARS-CoV-2 Delta and Omicron variants in hamsters. Cell Discov. 8, 62 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Port, J. R. et al. Augmentation of Omicron BA.1 pathogenicity in hamsters using intratracheal inoculation. npj Viruses 2, 3 (2024).

    Article 

    Google Scholar 

  • Forero, C. et al. Volume-associated clinical and histopathological effects of intranasal instillation in Syrian Hamsters: considerations for infection and therapeutic studies. Pathogens 11, (2022).

  • Handley, A. et al. SARS-CoV-2 disease severity in the golden Syrian Hamster model of infection is related to the volume of intranasal inoculum. Viruses 15, (2023).

  • Moore, I. N. et al. Severity of clinical disease and pathology in ferrets experimentally infected with influenza viruses is influenced by inoculum volume. J. Virol. 88, 13879–13891 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, D. S., Kok, T. & Li, P. The virus inoculum volume influences outcome of influenza A infection in mice. Lab. Anim. 47, 74–77 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Southam, D. S., Dolovich, M., O’Byrne, P. M. & Inman, M. D. Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L833–L839 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Miller, M. A. et al. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS ONE 7, e31359 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hui, K. P. Y. et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 603, 715–720 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chu, H., Chan, J. F. & Yuen, K. Y. Animal models in SARS-CoV-2 research. Nat. Methods 19, 392–394 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Port, J. R. et al. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nat. Commun. 12, 4985 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ganti, K. et al. Timing of exposure is critical in a highly sensitive model of SARS-CoV-2 transmission. PLoS Pathog. 18, e1010181 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, C., Wang, J., Yu, L., Sui, X. & Wu, Q. Omicron subvariant BA.5 is highly contagious but containable: successful experience from Macau. Front. Public Health 10, 1029171 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gattermann, R. et al. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol Lett 4, 253–255 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelnabi, R. et al. Nirmatrelvir-resistant SARS-CoV-2 is efficiently transmitted in female Syrian hamsters and retains partial susceptibility to treatment. Nat. Commun. 14, 2124 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rizvi, Z. A. et al. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. Elife 11, (2022).

  • Sasaki, M. et al. Combination therapy with oral antiviral and anti-inflammatory drugs improves the efficacy of delayed treatment in a COVID-19 hamster model. EBioMedicine 99, 104950 (2024).

    Article 
    PubMed 

    Google Scholar